#include <stdio.h>
//Definiciones basicas
 
#define WHITE 0
#define GRAY 1
#define BLACK 2
#define MAX_NODES 1000
#define oo 1000000000
Declarations
 
int n;  // number of nodes
int e;  // number of edges
int capacity[MAX_NODES][MAX_NODES]; // capacity matrix
int flow[MAX_NODES][MAX_NODES];     // flow matrix
int color[MAX_NODES]; // needed for breadth-first search
int pred[MAX_NODES];  // array to store augmenting path
 
int min (int x, int y) {
    return x<y ? x : y;  // returns minimum of x and y
}
//UNA COLA PARA LA BUSQUEDA DEL MAXIMO
 
int head,tail;
int q[MAX_NODES+2];
 
void enqueue (int x) {
    q[tail] = x;
    tail++;
    color[x] = GRAY;
}
 
int dequeue () {
    int x = q[head];
    head++;
    color[x] = BLACK;
    return x;
}
<span style="font-family: arial,sans-serif; font-size: 16px; line-height: normal; white-space: normal;"><span class="hps">//Prioridad a la amplitud de la búsqueda de una trayectoria de aumento</span></span>
 
int bfs (int start, int target) {
    int u,v;
    for (u=0; u<n; u++) {
    color[u] = WHITE;
    }
    head = tail = 0;
    enqueue(start);
    pred[start] = -1;
    while (head!=tail) {
    u = dequeue();
        // Search all adjacent white nodes v. If the capacity
        // from u to v in the residual network is positive,
        // enqueue v.
    for (v=0; v<n; v++) {
        if (color[v]==WHITE && capacity[u][v]-flow[u][v]>0) {
        enqueue(v);
        pred[v] = u;
        }
    }
    }
    // If the color of the target node is black now,
    // it means that we reached it.
    return color[target]==BLACK;
}
 
//Algoritmo de Ford-Fulkerson
 
int max_flow (int source, int sink) {
    int i,j,u;
    // Initialize empty flow.
    int max_flow = 0;
    for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        flow[i][j] = 0;
    }
    }
    // While there exists an augmenting path,
    // increment the flow along this path.
    while (bfs(source,sink)) {
        // Determine the amount by which we can increment the flow.
    int increment = oo;
    for (u=n-1; pred[u]>=0; u=pred[u]) {
        increment = min(increment,capacity[pred[u]][u]-flow[pred[u]][u]);
    }
        // Now increment the flow.
    for (u=n-1; pred[u]>=0; u=pred[u]) {
        flow[pred[u]][u] += increment;
        flow[u][pred[u]] -= increment;
    }
    max_flow += increment;
    }
    // No augmenting path anymore. We are done.
    return max_flow;
}
<span style="font-family: arial,sans-serif; font-size: 16px; line-height: normal; white-space: normal;"><span class="hps">
 
//Leyendo el archivo de entrada y el programa principal</span></span>
 
void read_input_file() {
    int a,b,c,i,j;
    FILE* input = fopen("mf.in","r");
    // read number of nodes and edges
    fscanf(input,"%d %d",&n,&e);
    // initialize empty capacity matrix
    for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        capacity[i][j] = 0;
    }
    }
    // read edge capacities
    for (i=0; i<e; i++) {
    fscanf(input,"%d %d %d",&a,&b,&c);
    capacity[a][b] = c;
    }
    fclose(input);
}
 
int main () {
    read_input_file();
    printf("%d\n",max_flow(0,n-1));
    return 0;
}
//en el archivo
 
6 10    // 6 nodes, 10 edges
0 1 16  // capacity from 0 to 1 is 16
0 2 13  // capacity from 0 to 2 is 13
1 2 10  // capacity from 1 to 2 is 10
2 1 4   // capacity from 2 to 1 is 4
3 2 9   // capacity from 3 to 2 is 9
1 3 12  // capacity from 1 to 3 is 12
2 4 14  // capacity from 2 to 4 is 14
4 3 7   // capacity from 4 to 3 is 7
3 5 20  // capacity from 3 to 5 is 20
4 5 4   // capacity from 4 to 5 is 4
 
Salida del programa
 
El programa calcula el flujo máximo de 0 a 5.
 
23